
Contents

1 Sample Calendar App 2

Manually building our app . 4

Downloading angular . 4

Booting it up . 6

2 Modules 7

3 Creating our-calendar directive 22

Drawing the calendar . 23

Integrating form validation in our app 33

Integrating with Google . 35

Including Google . 35

Building google Login . 39

Building a calendar API . 41

Providing login functionality in the app 46

1

SOLD TO THE FINE
daria@gglisten.com

Chapter 1

Sample Calendar App

In this mini-book, we’ll walk through the process of building a dynamic web
app together and explain AngularJS concepts along the way.

We’ll be building a complex TODO-style app. The final product will allow a
user to log in and authorize the client-side app with Google. It will communicate
with Google’s calendar API to interact with the Google calendar.

Users will input (in English) the text of their schedule. The app will enable
tagging, live search, grouping, and filtering, and it will include a custom calendar
element.

Figure 1.1: Finished app

2

Figure 1.2: Finished app

For the purposes of keeping this chapter focused on learning An-
gularJS, we will walk through how to build a raw AngularJS app
without using any tools beyond AngularJS. We discuss production
tools at length in our next steps chapter.

To build this app, we’re going to start with a super simple server. In fact,
we won’t even need to write code for our server: We’ll use the Python
SimpleHTTPServer for the time being.

Python’s SimpleHTTPServer is a simple server written in Python
that serves all the files in a single directory. It enables us to get
started working quickly, rather than needing to write our own.

To start the app using the SimpleHTTPServer, we’ll head to our terminal and
change into the directory where we’ll start building the app and type:

$ python -m SimpleHTTPServer 9000

Let’s navigate to a directory where we’ll keep the development of our code.
We recommend creating a directory in a location that you navigate often. For
instance, we recommend creating a directory in your Home folder (OSX/*nix)
or creating a Development directory in My Documents/ (Windows). Ultimately,
the choice is up to you.

We’ll refer to this top level directory as your app’s root directory.

3

When we start building our app, we’ll place an index.html in this directory
and head to our browser at http://localhost:9000. In the browser, our
index.html will be served through our local server.
To build the template for our app, you can do one of two things: Use git to clone
the example repository that we’ve made available with the book or manually
build the template.

Manually building our app

If instead, you’d prefer to build the app from scratch, the directory structure
we will start off with will look like this:

/
app/
js/
css/
lib/
img/
views/
index.html

Create these directories and files on your local machine. Open your terminal
and type the following to create the initial structure:

$ mkdir -p app/{js,css,lib,img,views}
$ touch app/index.html

In building our app, we’ll use the following directories to separate our different
functions:

• index.html: our main application template
• app/: Our main app directory. This is where we’ll serve our app from
• app/js/: where we’ll store our application-specific JavaScript files that

we write
• app/css/: where we’ll store our CSS styles
• app/lib/: where we’ll store any JavaScript library files that we download,

like angular.js
• app/views/: where we’ll store our AngularJS templates

Downloading angular

Once our directories are set, let’s download angular.js and store the file in our
app/lib/ folder.

4

https://ajax.googleapis.com/ajax/libs/angularjs/1.2.6/angular.min.js

Additionally, make sure you grab the angular-route.js library and store that in
the app/lib/ folder.

The angular-route.js file is available at angularjs.org if you click on extras
after clicking the download button.

Figure 1.3: Download angular

Make sure you grab both angular.js and angular-route.js and store
them in the app/lib folder.

In the demo application that comes with this book, we’re using the founda-
tion.zurb.com CSS framework. If you’d prefer to use another CSS framework,
feel free to grab it and any JavaScript files that are associated with it and store
them in the appropriate directories, but we recommend sticking with the book
for the best experience.

Finally, when we’re ready to go, let’s fill out our index.html file like so:

<!doctype html>
<html lang="en" ng-app="myApp">
<head>

<meta charset="utf-8">
<title>TodoIt</title>
<link rel="stylesheet" href="css/normalize.css"/>
<link rel="stylesheet" href="css/app.css"/>
<meta name="viewport" content="width=device-width">

</head>
<body>

<!-- Library files -->

5

http://code.angularjs.org/1.2.6/angular-route.js
http://angularjs.org/
http://foundation.zurb.com
http://foundation.zurb.com

<script src="lib/angular.js"></script>
<script src="lib/angular-route.js"></script>
<!-- App files -->
<script src="js/filters.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<script src="js/services.js"></script>
<script src="js/app.js"></script>

</body>
</html>

Now that we have our index.html page filled, we need to create a few files that
will contain our app.

Create these five JavaScript files in your app/js/ folder:

• app/js/filters.js
• app/js/controllers.js
• app/js/directives.js
• app/js/services.js
• app/js/app.js

We can do so with another terminal command:

$ touch app/js/{filters.js,controllers.js,directives.js}
$ touch app/js/{services.js,app.js}

Each of these files will contain the different parts of our application that their
titles suggest. We’ll discuss what should go in each of these files as we continue
through the book.

Booting it up

Finally, to see this app immediately in action, change into the app/ folder in
your terminal and start up the Python SimpleHTTPServer:

$ cd app/
$ python -m SimpleHTTPServer 9000

We’ll head to the browser and navigate to http://localhost:9000. We should
see an empty, but running app.

6

Chapter 2

Modules

As you may recall modules are how we define and organize our angularjs app.
Let’s create 5 different modules.

• A service module
• A directive module
• A filter modules
• A controller module
• A main app module

Our service module, js/services.js we’ll make a services module. For the
time being, we’ll leave it relatively empty. We’ll only declare an app version in
the module.

js/services.js

angular.module('myApp.services', [])
.constant('version', '0.0.1');

We’ll contain our custom directives in the js/directives.js file. We’ll cover
directives in-depth in the directives chapter.

js/directives.js

angular.module('myApp.directives', []);

As we would expect, we’ll contain our filters in the js/filters.js file. We’ll
cover filters in-depth in the filters chapter.

7

js/filters.js

angular.module('myApp.filters', []);

All of our controllers we will write will be placed in the controllers module
in js/controllers.js. We will cover controllers in-depth in the controllers
chapter.

js/controllers.js

angular.module('myApp.controllers', []);

Finally, we’ll write our main app module that will depend upon all of the mod-
ules we just declared. When specifying a module the array [] is a list of all of
the dependencies the app needs to be bootstrapped. Angular will not bootstrap
the module until these dependencies have been found and met.

Our app depends on all of our modules to run, so we’ll need to be sure to
include them in the second parameter. We’ll cover this dependency injection in
the dependency injection chapter.

js/app.js

var app = angular.module('myApp', [
'myApp.services',
'myApp.directives',
'myApp.filters',
'myApp.controllers'
]);

If we navigate to our app, we’ll notice that we haven’t extended the functionality
yet, but we’re ready to start developing a robust app.

Starting our app

Now that we have a pretty good understanding of data-binding, $scopes, and
controllers, let’s start to add functionality to our application.

Provided we followed the steps in the introduction, we should have our develop-
ment environment ready to go. If not, feel free to review the introduction chapter
of ng-book for a step-by-step of setting up our development environment.

In our app, we have a header that will show the current date. To accomplish
this, we’ll create a variable on our FrameController called today. This today
variable will hold the value of our date.

8

If our development environment is freshly created, we should have a
FrameController controller in our js/controller.js file that looks like:

angular.module('myApp.controllers', [])
.controller('FrameController', ['$scope', function($scope) {
}]);

We’ll use this FrameController as the parent controller to all of our other
controllers. Let’s add the variable called today on it and set it equal to today’s
date:

angular.module('myApp.controllers', [])
.controller('FrameController', ['$scope', function($scope) {
$scope.today = new Date(); // Today's date

}]);

Now, in our view we can simply reference today and that value will be replaced
with the value of new Date();. In our index.html, let’s add a reference to
today’s date to see that change reflected in the view.

<!doctype html>
<html lang="en" ng-app="myApp">
<head>

<meta charset="utf-8">
<title>TodoIt</title>
<link rel="stylesheet" href="css/vendor/normalize.css"/>
<link rel="stylesheet" href="css/app.css"/>
<meta name="viewport" content="width=device-width">

</head>
<body ng-controller="FrameController">
{{ today }}
<!-- Library files -->
<script src="lib/angular.js"></script>
<script src="lib/angular-route.js"></script>
<!-- App files -->
<script src="js/filters.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<script src="js/services.js"></script>
<script src="js/app.js"></script>

</body>
</html>

Now, when we can see we have a pretty ugly date in our view. We’ll clean this
up using filters later in this book.

9

Figure 2.1: First databinding

Next, we’ll eventually allow a user to log in to our app using Google APIS, but
for the time being we’ll set our current user’s name to a static name.
In our FrameController again, add the property of name to the scope:

angular.module('myApp.controllers', [])
.controller('FrameController', ['$scope', function($scope) {
$scope.today = new Date(); // Today's date
$scope.name = "Ari Lerner"; // Our logged-in user's name

}]);

And in our view, we can simply reference our user’s name, like like before.

<!-- head and include files above -->
<body ng-controller="FrameController">

<h1>{{ today }}</h1>
<h2>Welcome back {{ name }}</h2>

<!-- include files -->

Now that our FrameController is holding on to some variables we’ll use in
multiple templates, we can create a child controller of the FrameController
called the DashboardController.
First, let’s edit our js/controllers.js file and add a new controller:

angular.module('myApp.controllers', [])
.controller('FrameController',

10

https://developers.google.com/

['$scope', function($scope) {
$scope.today = new Date();
$scope.name = "Ari Lerner"; // Our logged-in user's name

}])
.controller('DashboardController',
['$scope', function($scope) {
}]);

Figure 2.2: With two variables bound

Almost all of our application code up until this point will be nested in the
DashboardController. First, we’ll need to nest this controller in our view.

<body ng-controller="FrameController">
<div ng-controller="DashboardController">

<h1>{{ today }}</h1>
<h2>Welcome back {{ name }}</h2>

</div>

As we saw above, we can still reference the variables defined on our
FrameController inside the DOM element of our DashboardController.
Now, let’s create an input field where our users will type their todo items.
To do this, we’ll create a entryInput attribute on the $scope of the
DashboardController.
This entryInput won’t need to be initialized at the outset as it will be bound
to the input field. If we were to initialize it, then the input field would be filled
with the value of our entryInput.

11

First, in our index.html file, let’s create an input field that we’ll bind the
entryInput variable:

<div ng-controller="DashboardController">
<h1>{{ today }}</h1>
<h2>Welcome back {{ name }}</h2>
<input ng-model="entryInput" type="text" placeholder="New Entry" />

</div>

Anytime that the input box value is changed, the $scope.entryInput will
change thanks to the bi-directional data-binding. Our updated controller looks
like:

angular.module('myApp.controllers', [])
.controller('FrameController',
['$scope', function($scope) {
$scope.today = new Date();
$scope.name = "Ari Lerner"; // Our logged-in user's name

}])
.controller('DashboardController',
['$scope', function($scope) {
$scope.entryInput = undefined;

}]);

Because we want the input field to start out as undefined, we do not
need to reference it in the DashboardController, as we did above
for the name and today attributes. It is good practice, however to
create variables inside the controller to be explicit.

In the following snippets, we’ll be setting up the functionality of our app the
will allow users to input their friends into the todo input box.
We’ll watch the entryInput field and parse the the value entered for dates,
#hashtags, links, and @users.

Note: we’ll move this functionality into a $filter to keep our con-
trollers clean.

Looking at our current view, we haven’t changed the html

<div ng-controller="DashboardController">
<h1>{{ today }}</h1>
<h2>Welcome back {{ name }}</h2>
<input ng-model="entryInput"

type="text"
placeholder="New Entry" />

</div>

12

Also suppose that we’ve got a list of friends that are associated with the current
user on the controller’s scope:

$scope.users = {
"ari": {
"twitter": "@auser"

},
"nate": {
"twitter": "@eigenjoy"

}
};

We’ll set up a $watch on the entryInput value that will track any changes that
happen on it. When the value changes, we’ll want to try to match any user that
is set in the input box with tokens that start with a @ symbol, such as: @ari.

As we previously set up, we’ll only need to make sure we inject the $parse
service into our controller:

.controller('DashboardController',
['$scope', '$parse', function($scope, $parse) {

// Setting up a watch expression to watch the entryInput
$scope.$watch('entryInput', function(newVal, oldVal, scope) {

if (newVal !== oldVal) {
// newVal now has the latest updated version

}
});

}]);

On change, let’s look through the input text box and find any tokens that start
with the @ symbol using the built in regex feature of javascript called match():

$scope.$watch('entryInput', function(newVal, oldVal, scope) {
if (newVal !== oldVal) {

// Look for any part of the string that starts with @
var strUsers =
newVal.match(/[@]+[A-Za-z0-9_]+/g),
i;

// If any part of the string starts
// with @, then we
// will have a list of those tokens
// in strUsers
if (strUsers) {

// We'll loop through our users and parse the $scope

13

// looking for user
for (i = 0; i < strUsers.length; i++) {

// Found user in the form @[user]
var user = strUsers[i];

}
}

}
});

Now that we are looping through any user that we may find and storing that
user into a local variable of user. Let’s modify the loop to use the $parse
service to look through the current scope for the user:

for (i = 0; i < strUsers.length; i++) {
// Found user in the form @[user]
// Remove the @ symbol
var user = strUsers[i],
cleanUser = user.slice(1),
// In here, we'll look up the cleanUser
// in the local scope users object.
// For instance, if the user
// inputted "@ari" in the input, this
// would try to find
// users.ari in the local scope.
parsedUser = $parse("users." + cleanUser)(scope);

if (parsedUser) {
// A user was found on our scope in
// the "users" object

} else {
// No user was found on our scope in
// the "users" object

}
}

From here, we can assume we have the user in the parsedUser object if it’s found
on the local “users” object. If the parsedUser is undefined, it means it could
not find the user on the scope. If it is found, then parsedUser will contain the
object, if not, then it will be undefined.

Note that this example is simply set up to demonstrate how to use
the $parse service. A cleaner, more performant method of doing
this would be to create a method on the scope that looks up the
user, rather than appending a string as we’ve done above.

14

From here, we can choose to do what we want with the parsedUser object. In
our case, we’ll store it when we build the parse $filter.

In our app, we’ll create several filters that will enable us to control the expected
behavior of the app.

• blankIfNegative - a filter that ensures only the dates in the calendar’s
month appears

• excludeByDate - filters out any dates that do not belong in a date keep
filter (such as today, tomorrow, next week, etc.)

• parseEntry - parses the entryInput field and pulls out any interesting
tags, users, urls, and dates that the user writes into the entry field

• searchFilter - a search filter that enables us to live search the current list
of events

In our app, we’ll nest all of our filters in the myApp.filters module, as is best
practice:

angular.module('myApp.filters', []);

We’ll need to ensure that this module is set as a dependency for our app, we’ll
add this myApp.filters as a runtime dependency in our myApp module defini-
tion (in our js/app.js file):

angular.module('myApp', [
'myApp.filters'

]);

blankIfNegative filter

We’ll use the blankIfNegative filter in the calendar HTML that will prevent
any negative values from showing up in the calendar table.

As we have not yet created our calendar’s directive, this filter will be used in
our HTML to show a space if the value passed in is non-positive. For instance:

<h2>{{ 15 | blankIfNegative }}</h2> <!-- 15 -->
<h2>{{ -15 | blankIfNegative }}</h2> <!-- -->

To create this filter, we’ll use the filter() API:

angular.module('myApp.filters', [])
.filter('blankIfNegative', function() {

return function(input) {

15

if (input <= 0) return ' ';
else return input;

}
});

excludeByDate filter

In the main dashboard view of our app, we’re repeating over the list of our
events in our Google calendar. Since we have a few date filters as objects in our
scope, we’ll want to filter by our date.

Figure 2.3: Custom date filters

In our HTML, we have buttons that are set to change a specific filter of a before-
by date. Clicking on one of the filters will change the keepDate property on our
$scope object.

Let’s look at this process a bit deeper. The HTML we’ll use looks similar to
the following:

<a ng-click='keepDate=dateFilters["all"]'>
All

<a ng-click='keepDate=dateFilters["today"]'>
Today

16

<a ng-click='keepDate=dateFilters["tomorrow"]'>
Tomorrow

Clicking on these links will update the keepDate property on our DashboardController.
Obviously we need to set up our dateFilters property on our scope. Since
these dates won’t change often, we can set them as a single property value on
our scope.

To really be efficient, we can move the dateFilters into a service.

.controller('DashboardController',
['$scope',
function($scope) {

var date = new Date();
$scope.dateFilters = {
'all': 'all',
'next week': new Date(date.setDate(date.getDate() + 7)),
'tomorrow': chrono.parseDate('tomorrow at 11:59pm'),
'today': chrono.parseDate('today at 11:59pm')

}
}]);

Note that for this function to work properly, we’ll need to ensure we
include the chrono library at the head of our HTML document.

With the backend set, we can implement this filter in the HTML by setting it
to filter against the list of events in the standard lists filter manner:

<li ng-repeat="events in events |

excludeByDate:keepDate">
{{ event.summary }}

With this set, we’ll be using the excludeByDate filter in our view. The
excludeByDate filter will receive the entire array of events as a parameter as
well as a second parameter of the filter date.

The function itself will:

• check if the date passed in is ‘all’. If so, it will return the entire set

17

• Return only the events who’s start.dateTime is before the filterBy date

.filter('excludeByDate', function() {
return function(arr, date) {

if (date === 'all') return arr;
var newArr = [];
angular.forEach(arr, function(evt) {

var evtDate = new Date(evt.start.dateTime);
if (evtDate <= date)
newArr.push(evt);

});
return newArr;

}
});

One thing to note is that filters run a lot on almost all of the $digest loops. We
can achieve this same effect with slightly better performance and more control
if we move this filter function to the controller. Luckily, this is not difficult to
do.

Instead of calling this custom filter in the view, we’ll use the standard filter
function in the view.

<li ng-repeat="events in events |

fitler:excludeByDate">
{{ event.summary }}

Inside the DashboardController we can change the function as it will be called
once for each element and return true if we want to keep the date in the list or
false if we do not:

$scope.excludeByDate = function(input) {
if ($scope.keepDate === 'all') {

return true;
} else {

return new Date(input.start.dateTime).getTime() <
$scope.keepDate.getTime();

}
}

These two implementations of this filter process are effectively equivalent.

18

parseEntry filter

The last filter we’ll need in our app is the parseEntry filter. This filter, unlike
our other two will be called directly from our controller. Instead of returning
a true or false condition for display purposes, we’ll use this filter to parse our
entryInput text.

The filter itself will take two parameters, a single value of the text inputed into
the newEntry text and a javascript object of known users.

.filter('parseEntry', ['$parse', function($parse) {
return function(val, users) {

var i = 0;
var data = { raw: val };
if (val) {

// Our parsing functions will go here
}

}]);

Now inside our parseEntry filter, if we are given a value that makes sense, we
can dissect the text. As the majority of this code is simple javascript, we won’t
cover it in detail, but the source is attached for completeness. Note that we are
returning an object that potentially has the keys:

• raw - the raw entry
• tags - any text prepended with #
• users - any text prepended with @
• date - the chrono parsed date

.filter('parseEntry', ['$parse', function($parse) {
return function(val, users) {

var i = 0;
var data = {
raw: val

};

if (val) {
// Find urls

var strUrls =
val.match(/[A-Za-z]+:\/\/[A-Za-z0-9-_]+\.[A-Za-z0-9-_:%&~\?\/.=]+/g),

urls = [];

if (strUrls) {
for (i = 0; i < strUrls.length; i++) {
urls.push(strUrls[i]);

19

}
val = val
.replace(/[A-Za-z]+:\/\/[A-Za-z0-9-_]+\.[A-Za-z0-9-_:%&~\?\/.=]+/g, '');

data['urls'] = urls;
}

// Find tags
var strTags = val.match(/[#]+[A-Za-z0-9_]+/g),

tags = [];

if (strTags) {
for (i = 0; i < strTags.length; i++) {
tags.push(strTags[i]);

}
val = val.replace(/[#]+[A-Za-z0-9_]+/g, '');
data['tags'] = tags;

}

// Find users
var strUsers = val.match(/[@]+[A-Za-z0-9_]+/g),

users = [];

if (strUsers) {
for (i = 0; i < strUsers.length; i++) {

var user = strUsers[i];

if (users) {
var parseVal = $parse("users." + user.slice(1))(users);
if (typeof(parseVal) === 'undefined') parseVal = user;

}
else {

var parseVal = user;
}

users.push(parseVal);
}
val = val.replace(/[@]+[A-Za-z0-9_]+/g, '');
data['users'] = users;

}

// Finally, parse the date
var date = chrono.parseDate(val);
if (date) {
data['date'] = date;

}
}

20

return data;
}

}])

21

Chapter 3

Creating our-calendar
directive

app.directive('ourCalendar', function() {
return {
restrict: 'A',
require: '^ngModel',
scope: {
ngModel: '='

},
template: '<table class="calendar"></table>'

}
});

Going back to our calendar directive, we’ll need to pass in a date with our
directive from which to display. To do that, we could put in a date via text, but
that will be pretty ugly. Instead, we’ll bind it to the surrounding controller of
‘date’.

<div our-calendar ng-model="date"></div>

Our directive now looks like this:

app.directive('ourCalendar', function() {
return {
restrict: 'EA',
require: '^ngModel',
scope: {
ngModel: '='

22

},
template: '<table class="calendar"></table>'

}
});

Drawing the calendar

To draw the calendar, we’ll need to fill out out template. Luckily, the template
is not that complex:

We’re using the \ at the end of each line to allow for us to be able
to break up the template into multiple lines.

app.directive('ourCalendar', function() {
return {
restrict: 'EA',
require: '^ngModel',
scope: {
ngModel: '='

},
template: '<table class="calendarTable">\
<thead>\
<tr>\
<td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}</td>\

</tr>\
</thead>\
<tbody>\
<tr>\
<td ng-repeat="d in weekDays">{{ d }}</td>\

</tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index"\

ng-class="{currentDay: d == day}">\
{{ d }}\
</td>\

</tr>\
</tbody>\

</table>'
}

});

Now, in order to actually render our template with the date, we’ll have to set
up the binding with the link function. We’ll set up a watch on the ngModel

23

that will watch for changes on the date. That way, anytime the date changes
in the containing controller, the calendar can reflect that change.

Controller option

In a directive, when we set the controller option, we are creating a controller for
the directive. This controller is instantiated before the pre-linking phase.

The pre-linking and post-linking phases are executed by the compiler. The pre-
link function is executed before the child elements are linked, while the post-link
function is executed after. It is only safe to do DOM transformations after the
post-link function.

We are defining a controller function in our directive, so we don’t need to de-
fine either of these functions, but it is important to note that we cannot do DOM
manipulations in our controller function because the controller is instantiated
before the pre-link phase, thus we have no access to the DOM yet.

What does a controller function look like? Just like any other controller. Let’s
see what it looks like when we inject the $http service in our controller (using
the bracket injection notation):

app.directive('ourCalendar', function() {
return {
restrict: 'EA',
require: '^ngModel',
scope: {
ngModel: '='

},
template: '<table class="calendarTable">\
<thead>\
<tr>\
<td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}\
</td>\

</tr>\
</thead>\
<tbody>\
<tr>\
<td ng-repeat="d in weekDays">{{ d }}</td>\

</tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index"\

ng-class="{currentDay: d == day}">\
{{ d }}\
</td>\

24

</tr>\
</tbody>\

</table>',
controller: ['$scope', '$http', function($scope, $http) {
$scope.getHolidays = function() {}

}]
}

});

Note that in our link function, we have access to all of the attributes that were
declared in the DOM element. This will become important in a minute when
we go to customize the directive.

We’re not making any ajax or api calls in this chapter, we won’t actually create
our getHolidays function, but it’s good to note that this is how we can make
http requests inside our directive.

<div our-calendar ng-model="date"></div>

Let’s start building our link method that will actually build and draw the
calendar on screen.

The $watch function will register a callback to be executed whenever the result
of the expression changes. Inside the $digest loop, every time AngularJS de-
tects a change, it will call this function. This has the side effect that we cannot
depend on state inside this function. To counter this, we’ll check for the value
before we depend on it being in place.

Here is our new $watch function:

scope.$watch(attrs.ngModel, function(date) {
if (date) {

// we're ready to process the date
}

});

Every time the date property on our scope changes, our function declared in the
watchExpression will fire.

Here’s what we have so far:

app.directive('ourCalendar', function() {
return {
restrict: 'EA',
require: '^ngModel',
scope: {

25

ngModel: '='
},
template: '<table class="calendarTable">\
<thead>\
<tr>\
<td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}</td>\

</tr>\
</thead>\
<tbody>\
<tr>\
<td ng-repeat="d in weekDays">{{ d }}</td>\

</tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index"

ng-class="{currentDay: d == day}">\
{{ d }}\
</td>\

</tr>\
</tbody>\

</table>',
controller: ['$scope', '$http', function($scope, $http) {
$scope.getHolidays = function() {}

}],
link: function(scope, ele, attrs, ctrl) {
scope.$watch(attrs.ngModel, function(newDate, oldDate) {
if (!newDate)
newDate = new Date(); // If we don't specify

// a date, make the
// default date today

});
}

}
});

Adding in our drawing code isn’t particularly interesting or angular specific, so
we’ll include it here:

app.directive('ourCalendar', function() {
// Array to store month names
var months = new Array('January',' February', 'March', 'April', 'May',
'June', 'July', 'August', 'September', 'October', 'November', 'December');

// Array to store month days
var monthDays = new Array(31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31);

26

// Array to store week names
var weekDay = new Array('Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su');
return {
restrict: 'EA',
require: '^ngModel',
scope: {
ngModel: '='

},
template: '<table class="calendarTable">\
<thead>\
<tr>\
<td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}\

</td>\
</tr>\

</thead>\
<tbody>\
<tr>\
<td ng-repeat="d in weekDays">{{ d }}</td>\

</tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index" \
ng-class="{currentDay: d == day}">\

{{ d }}\
</td>\

</tr>\
</tbody>\

</table>',
controller: ['$scope', '$http', function($scope, $http) {
$scope.getHolidays = function() {}

}],
link: function(scope, ele, attrs, c) {
scope.$watch(attrs.ngModel, function(date) {
if (!date) date = new Date();
var week_day, counter, i, curr_week;

var day = date.getDate(),
month = date.getMonth(),
year = date.getFullYear();

scope.days_in_this_month = monthDays[month];
scope.monthName = months[month];

scope.currentWeek = 0;

scope.month = {};

27

var thisMonth = new Date(year, month, 1),
firstDay = new Date(thisMonth.setDate(1)).getDay(),
weeksOfMonth =
Math.ceil((firstDay + scope.days_in_this_month)/ 7) + 1;

scope.weekDays = weekDay;
// First week
curr_week = 0;

scope.month[curr_week] = [];
for (week_day = 0; week_day < thisMonth.getDay(); week_day++) {
scope.month[curr_week][week_day] = week_day * -1;

}
week_day = thisMonth.getDay();
for(counter=1; counter <= scope.days_in_this_month; counter++)
{
week_day %= 7;

if (week_day == 0) {
curr_week += 1;
scope.month[curr_week] = [];

}

scope.month[curr_week].push(counter);

week_day += 1;
}

while(scope.month[curr_week].length < 7) {
scope.month[curr_week].push(counter * -1);

}

scope.day = day;
scope.year = year;

});
}

}
});

Now that we have our calendar being drawn, let’s give our directive some cus-
tomizable features.

For instance, our calendar right now features the full name of the calendar in
the header. However, if we are using this calendar in a place that does not have
a lot of room on the page, we might want to hide the full length and only show
a shortened version of it instead.

28

We have access to the attrs (the normalized list of the attributes that we define
in our HTML), we can simply look there first; otherwise we can set a default to
see what how we want to show the header.

Let’s change the setting of the $scope.monthname to:

if (attrs.showshortmonth) {
scope.monthName = months[month].slice(0, 3);

} else {
scope.monthName = months[month];

}

Now, we’ll only show the first three characters of the name of the month if
we include the showshortmonth as an attribute. When we invoke the directive,
we’ll use the attribute:

<div our-calendar showshortmonth='true'></div>

Now our calendar’s header will change to show the shortened 3-character calen-
dar header.

Transclude option

Although the name sounds complex, transclusion just refers to compiling the
content of the element and making the source available to the directive. The
transcluded function is pre-bound to the calling scope, so it has access to the
current calling scope.

Looking at an example, let’s change the invocation to:

<div our-calendar ng-model="date">
<h3>On this day...</h3>

</div>

To get this to show up in our template, we’ll need to use a special directive
called ngTransclude. This is how the template knows where to place the custom
HTML. Let’s modify the template in our directive to include the custom content:

template: '<table class="calendarTable">\
<thead>\
<tr><td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}</td>\

</tr></thead>\
<tbody>\

29

<tr><td ng-repeat="d in weekDays">{{ d }}</td></tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index"\
ng-class="{currentDay: d == day}">\

{{ d }}\
</td>\

</tr>\
<tfoot><tr>\
<td colspan="7" ng-transclude></td>\
</tfood></tr></table>',

Additionally, we’ll have to tell AngularJS that our directive will be using tran-
sclusion. To do that, we’ll have to set the transclude option either to:

• true, which will take the content of the directive and place it in the tem-
plate

• ‘element’, which will take the entire defined DOM element including the
lower priority directives (see notes on directive priority order below)

Set the transclude option to true, as we only want the content of our directive
to show up in our template:

transclude: true

Next steps

We’ve covered how to build a directive from a very basic level to a higher level
of complexity. Hopefully you’ve gained some confidence and knowledge about
how to move forward in the future and provide and build your own custom
directives.

The entire source of our calendar directive is here:

angular.module('myApp.directives', [])
.directive('ourCalendar', [function() {

// Array to store month names
var months = new Array('January',' February', 'March', 'April', 'May',
'June', 'July', 'August', 'September', 'October', 'November', 'December');

// Array to store month days
var monthDays = new Array(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

// Array to store week names
var weekDay = new Array('Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su');

30

return {
require: '^ngModel',
restrict: 'EA',
transclude: true,
scope: {
ngModel: '='

},
template: '<table class="calendarTable">\
<thead>\
<tr><td class="monthHeader" colspan="7">\
{{ monthName }} {{ year }}</td>\

</tr></thead>\
<tbody>\
<tr><td ng-repeat="d in weekDays">{{ d }}</td></tr>\
<tr ng-repeat="arr in month"> \
<td ng-repeat="d in arr track by $index"\
ng-class="{currentDay: d == day}">\

{{ d | blankIfNegative }}\
</td>\

</tr>\
<tfoot><tr>\
<td colspan="7" ng-transclude></td>\
</tr></table>',

link: function(scope, ele, attrs, c) {
scope.$watch(attrs.ngModel, function(date) {

if (!date) date = new Date();
var week_day, counter, i, curr_week;

var day = date.getDate(),
month = date.getMonth(),
year = date.getFullYear();

scope.days_in_this_month = monthDays[month];

if (attrs.showshortmonth) {
scope.monthName = months[month].slice(0, 3);

} else {
scope.monthName = months[month];

}

scope.currentWeek = 0;

scope.month = {};

var thisMonth = new Date(year, month, 1),
firstDay = new Date(thisMonth.setDate(1)).getDay(),
weeksOfMonth =

31

Math.ceil((firstDay + scope.days_in_this_month)/ 7) + 1;

scope.weekDays = weekDay;
// First week
curr_week = 0;

scope.month[curr_week] = [];
for (week_day = 0; week_day < thisMonth.getDay(); week_day++) {
scope.month[curr_week][week_day] = week_day * -1;

}
week_day = thisMonth.getDay();
for (counter = 1; counter <= scope.days_in_this_month; counter++)
{
week_day %= 7;
// We are at the start of a new week
if (week_day == 0) {
curr_week += 1;
scope.month[curr_week] = [];

}

scope.month[curr_week].push(counter);
week_day += 1;

}

while(scope.month[curr_week].length < 7) {
scope.month[curr_week].push(counter * -1);

}

scope.day = day;
scope.year = year;

});
}

}

Now to use this directive in-practice, we’ll only have to tell the view where we
want it placed and what to bind our ngModel to in the backend. To wrap all
this back in the view, we’ll set it as an attribute in the DOM element where we
want it placed.

<div our-calendar showShortMonth="true" ng-model='newEntry.date'>
<h3>Today</h3>

</div>

The newEntry.date in the above example is bound to the main
input field where our users will enter their todo entry.

32

Now that we’ve got the handle of building a directive under our belt, we’re going
to use another directive to setup a custom form validation.

Integrating form validation in our app

In our app, we have a single input field. This input field that requires that a
date is filled out. Without a date, we won’t be able to place an event on the
calendar. In order to add a custom validation, we’ll need to build a directive
just as we did above.

angular.module('myApp.directives')
.directive('ensureHasDate', [function() {

// Our form validation for ensuring we have a date
// will go in here

}]);

To parse dates from our input field, we’ll use the fantastic chrono library. To
include the chrono library into our app, we’ll need to download it and store it
in our lib/ directory.

cd public/lib
curl -O https://raw.github.com/berryboy/chrono/master/chrono.min.js

Then we’ll need to make sure we include this as a library in our index.html
page. As we did previously with all of our library scripts, we’ll just need to
make sure that this is included at the bottom of our page:

<script src="lib/chrono.min.js"></script>

Now we can start to write our validation directive.

In our validation directive, we’re going to use the chrono library to parse the
text and find a date inside of it. If it finds a date, then we’ll consider the form
valid and set it as valid. If it doesn’t not find a date, then we’ll consider the
input text to be invalid.

The first step in our directive is to require that the form has access to the
ngModel and to create an isolate scope on that form validation with a binding
to the parent’s ngModel. In code, this looks like:

angular.module('myApp.directives')
.directive('ensureHasDate', [function() {

return {
require: '^ngModel',

33

scope: {
'ngModel': '='

}
}

}]);

Once our form gets loaded into the view, we’ll want to attach a $watch to watch
for the ngModel to be populated. Remember, this is because the directive will
get loaded at compile-time and ngModel won’t be available until the run-time.

angular.module('myApp.directives')
.directive('ensureHasDate', [function() {

return {
require: '^ngModel',
scope: {
'ngModel': '='

},
link: function(scope, ele, attrs, ctrl) {
scope.$watch(attrs.ngModel, function(newVal) {

if (newVal) {
// We are in the runtime and ngModel has been populated

} else {
// At initialization stage

}
});

}
}

}]);

With this $watch in place, we can now create the validation that checks if there
is a date or not in the string. The chrono library will return a null object if no
date is found and a Date object if one is found. Using this fact, we can check if
the date that’s returned is a null object.

To set the validity on the form element, we’ll use the $setValidity method
on the directive’s controller. This $setValidity method will set not only the
validity of the input field, but it will set it on the form in general.

angular.module('myApp.directives')
.directive('ensureHasDate', [function() {

return {
require: '^ngModel',
scope: {
'ngModel': '='

},

34

link: function(scope, ele, attrs, ctrl) {
scope.$watch(attrs.ngModel, function(newVal) {

if (newVal) {
// We are in the runtime and ngModel has been populated
var date = chrono.parseDate(newVal);
ctrl.$setValidity('hasDate', date !== null);

} else {
// Without a date, the form is always invalid
ctrl.$setValidity('hasDate', false);

}
});

}
}

}]);

The $setValidity method will take care of telling AngularJS that the form
is invalid. It will also let AngularJS set the proper classes for both the invalid
form as well as the form itself.

Integrating with Google

Up until this moment, we’ve been working locally, without integration to Google.
Although we’ll have a fully-featured calendar application, we don’t have any
persistence, which is rather unimpressive.

Let’s start building in Google calendar integration.

Including Google

In order to include Google in the source of our application, we’ll need to tell our
page to download the google JavaScript library and bootstrap it. We can simply
include the <script> tag from Google itself, but then we won’t be able to take
advantage of the fantastic dependency injection from Angular. Additionally,
we’ll need to wait to bootstrap our angular app until the external Google script
has been loaded on the page. This can definitely be a jarring experience for our
users.

In order to take advantage of the dependency injection as well as bootstrap our
app without waiting for external apps, we can wrap the loading of the Google
API in a service that is specifically intended to only load the external service
script. Luckily, we can do this easy using standard Angular mechanisms.

First, let’s create an independent module we’ll call googleServices where we’ll
write all of our google integration scripts. We’ll also write the first api, which
will wrap the googleApi script in a load tag.

35

In our app/js/services.js file, add the following:

angular.module('googleServices', [])
.service('googleApi',
function($window, $document, $q, $rootScope) {

// Service definition function
});

Perfect. Now we can add the loading of the google script inside the service
load. Since services themselves are singleton objects, we can guarantee that
this function will run once and only once. Here we can load the script tag on
the body of our page.

We’ll use the promise api to load the script and resolve it after the script has
loaded. Since Google gives us a method to call after the script has loaded, we’ll
need to call this function before we resolve the promise.

The full service looks like:

angular.module('googleServices', [])
.service('googleApi',

function($window, $document, $q, $rootScope) {
// Create a defer to encapsulate the
// loading of our Google API service.
var d = $q.defer();

// After the script loads in the browser,
// we're going
// to call this function, which in turn
// will resolve
// our global defer which enables the
$window.bootGoogleApi = function(keys) {

// We need to set our API key
window.gapi.client.setApiKey(keys.apiKey);
$rootScope.$apply(function() {
d.resolve(keys);

});
};

// Load client in the browser
var scriptTag = $document[0].createElement('script');
scriptTag.type = 'text/javascript';
scriptTag.async = true;
scriptTag.src='//apis.google.com/js/client:plusone.js?onload=onLoadCallback';
var s = $document[0].getElementsByTagName('body')[0];
s.appendChild(scriptTag);

36

// Return a singleton object that
// returns the promise
return d.promise;

});

Anywhere that we need to use the googleApi we can simply call it on the
promise, rather than to the api itself. For instance:

googleApi.then(function(keys) {
// The googleAPI has resolved and
// we're ready to go.

});

Since we’re going to need to build authorization in through the Google, we’ll
need to wrap in the authorization API. If we wrap this in a service, then we can
simply call the authorization in a single factory.

Let’s create a googleAuthApi factory that houses the authorization API. Since
this service is fairly standard, we won’t run through it line-by-line.

In our api/js/service.js file, add the following service:

.factory('googleAuthApi',
function($window, $timeout, $rootScope, $q, googleApi) {

var auth;

// The authorize function will call
// google auth.authorize which will
// authorize this browser client to
// the user's account along with the appropriate
// scopes. It will then call
// `handleAuthResult` with the promise
// to resolve
var authorize = function(keys, firstCheck) {

var d = $q.defer();
if (typeof(firstCheck) === "undefined")
firstCheck = false;

if (auth) {
d.resolve(auth);

} else {
googleApi.then(function(keys) {
gapi.auth.authorize({
client_id: keys.clientId,
scope: keys.scopes.join(" "),

37

immediate: firstCheck
}, handleAuthResult(d));

});
}
return d.promise;

};

// handleAuthResult simple resolves the
// deferred object if there are no errors.
// If there are errors
// then simply reject the promise
var handleAuthResult = function(defer) {

return function(authResult) {
if (authResult && !authResult.error) {
auth = authResult;
$rootScope
.$broadcast('user:authorized',authResult);

defer.resolve(authResult);
} else {
defer.reject();

}
}

};

googleApi.then(function(keys) {
authorize(keys, true);

});

// return a singleton object with the
// single authorize api
return {
authorize: authorize

}
})

A few notes about this service before we move on. We’re using the googleApi
service to resolve the loading of the google gapi client. Again, this allows us to
load the google api without needing to wait, but safely allows us to describe the
interactions that we’ll have with the google API.
Additionally, we have the authorization check happening immediately on the
load of the service (after the gapi client is made available). The first time we
call authorize, we have to tell Google that we’re calling the method the first
time. This where the firstCheck variable comes into play.
Lastly, when Google responds we’re sending an event to the rest of the app so
that anywhere in the app. We’ll use this later when we want to redirect the

38

user on a successful authorization when the page loads.

Building google Login

Now that we have our authorization api setup, we’ll need to create the service
that will actually make the login request.

Inside Google login, we’ll need to wrap in the fetching of user info as well. This
googleLogin service will need to include both handling login as well as handling
fetching the user info. We’ll also create an API method to check if our users are
logged in.

Let’s start building our googleLoginApi service.

.factory('googleLoginApi',
function($q, $rootScope, googleAuthApi, googleApi) {
// Create a load deferred object
var loadedDefer = $q.defer(),

loadedPromise = loadedDefer.promise,
_loggedInUser = null,
keys = null;

// Our google Login API function definition
// TODO: Define code here
//
// return our factory object
return {
login: login,
getLoggedInStatus: function() {

return loadedPromise;
}

}
})

Although we haven’t written the functionality yet, the API is clear, we’re pro-
viding a login() function and a getLoggedInStatus() function.

First off, we’re going to need to tell the gapi to load the oauth2 api. We can
do this in side the factory function definition:

// call to load the oauth2 module on the
// gapi client immediately.
// When it's loaded, resolve the loadedDefer object
googleApi.then(function(_keys) {
keys = _keys;
gapi.client.load('oauth2', 'v2', function () {
loadedDefer.resolve(keys);

39

});
});

Once that’s set, our loadedDefer will resolve which is simply a variable that
we’re holding onto inside the service to define the functionality on the service.
This functionality is similar to defining the googleApi service in that we’re
simply defining a promise that resolves when our service is ready.

Once we set the loadedDefer to resolve when the library is ready, we can start
defining the functionality of our service.

The login() function will be defined as a series of steps to attempt to resolve
the currently logged in user. That is we will call to get the userinfo from the
gapi client. If we succeed, then we’ll simply resolve the user info and return
the loggedIn user’s info.

If the call to userinfo fails, then we’ll use the googleAuthApi() that we just
created to authorize() the Google service for the user. If this fails, then we’ll
simply need to reject the promise (which we can handle later in our app). If
that succeeds, then we can re-request the userinfo from the googleAuthApi
and proceed as normal.

The login() function in its entirety is as follows:

// Create a login function
// Inside this login function, we'll return a
// deferred object and then attempt to authorize
// and find user data
var login = function() {

var d = $q.defer();

// getUserInfo waits until the gapi login
// service has loaded (using the loadedPromise)
// and then immediately calls
// gapi.client.oauth2.userinfo.get() to fetch
// google data. It calls the `success` callback
// if it's successful and the `fail` callback
// if unsuccessful
var getUserInfo = function(success, fail) {
loadedPromise.then(function() {
gapi.client.oauth2.userinfo.get()
.execute(function(resp) {

if (resp.email) success(resp);
else fail(resp);

});
});

};

40

// resolveUserInfo resolves user data
// from google and takes care of calling the
// getUserInfo for us. It will also save and
// cache the resolved user so we never call the
// gapi session during the same browser load
var resolveUserInfo = function(d) {
getUserInfo(function success(resp) {

// Resolve the response
$rootScope.$apply(function() {
d.resolve(resp);

});
},
// Our failure function
function fail(resp) {

// If the response code is 401 (unauthorized)
// then call authorize on the `googleAuthApi`
// without being immediate (false)
// and call resolveUserInfo to get the user's
// info on load
if (resp.code === 401) {
googleAuthApi.authorize(keys, false)
.then(function() {
resolveUserInfo(d);

});
} else {
d.reject(resp);

}
});

};

// Call resolve immediately
resolveUserInfo(d);

return d.promise;
}

Building a calendar API

Now that the basis for our google functionality is set, we can start to integrate
other google services inside of our google api service. For us, we’ll simply need
to create an integration with the calendar API.

Considering that we’ve already created a pattern for how to integrate with
Google, this process is quite easy. To recap, the pattern is:

41

1. Create a promise that gets resolved after the googleApi is resolved
2. Define our functionality atop the promise

First, let’s create the googleCalendarApi serivce:

.factory('googleCalendarApi',
function($timeout, $q, $rootScope,
googleApi, googleAuthApi) {

var calendarCache = [],
loadedCalendar = $q.defer(),
loadedPromise = loadedCalendar.promise;

// Define our calendar functionality

// First, call to load the calendar api
// after the gapi client is loaded
// and then resolve the loadedCalendar deferred object
googleApi.then(function(keys) {
gapi.client.load('calendar', 'v3', function() {

// Loaded calendar after here
loadedCalendar.resolve();

});
});

return {
// API

}
})

Now all we need to do is interact with the google calendar API as expected on
top of the loadedPromise.

In our service, we’ll write a core function that will grab the entire list of calendars.
In this function, we want to check to see if the user is actually logged in via
Google. We obviously do not want an unregistered user to be able to use our
Calendar API (although, we can handle this using our googleLoginService).

Other than that, we’ll hold onto the calendar cache as a cache of the user’s
calendars and resolve the request:

var getCalendars = function(cb) {
var d = $q.defer()
googleAuthApi.authorize().then(function(auth) {

if (calendarCache.length > 0) {
d.resolve(calendarCache);

} else {

42

loadedPromise.then(function(keys) {
gapi.client.calendar.calendarList
.list({}).execute(function(resp) {

// If the response is 401 (unauthorized)
// then we know the user needs to login
// so fire off the `user:login_required` event
if (resp.code == 401) {
console.log("resp", resp);
$rootScope
.$broadcast('user:login_required');

} else {
// otherwise, if we have calendar items in
// the response, then we know the API call
// was successful so we'll resolve the
// calendar request
if (resp && resp.items) {
calendarCache = resp.items;
$rootScope.$apply(function() {
d.resolve(calendarCache);

});
} else {
d.reject(resp);

}
}

});
});

}
});
return d.promise;

};

In our service, it’s likely more useful to to get a single calendar by it’s id. We
can use this calendar cache to sift through the list of calendars and pull out the
calendar of the id we’re interested in:

// Get a specific calendar by `id`.
// Since we are using the `getCalendars()` function
// from above, we know that we can depend on the
// gapi client and calendar service to be loaded.
// We'll simply walk through the list of calendars
// in our cache and find the one with the right "summary"
var getCalendar = function(id) {

var d = $q.defer();

var calendars = getCalendars()

43

calendars.then(function(calendars) {
var i = 0,

c = null;
for (i = 0; i < calendars.length; i++) {
c = calendars[i];
if (c.summary === id) {
d.resolve(c);

}
}
d.reject("Not found");

});

return d.promise;
}

Finally, we need to add two functions, one to get the list of events on the calendar
and another to save an event to the calendar.

The functionality for getEventsForCalendar() is pretty much using the gapi
api directly and it’s functionality should be self explanatory:

var getEventsForCalendar = function(id, opts) {
var d = $q.defer()

var c = getCalendar(id);
c.then(function(c) {
gapi.client.calendar.events.list({
'calendarId': c.id

}).execute(function(resp) {
$rootScope.$apply(function() {
d.resolve(resp.items);

});
});

});

return d.promise;
}

Similarly, the addEventToCalendar() method is fairly self-explanatory as well.
The only trick to the addEventToCalendar()method is that we’ll need to define
an event object that makes sense for our application.

var addEventToCalendar = function(evt, id) {
var d = $q.defer();

44

getCalendar(id).then(function(c) {
var dateobj = {
'calendarId': c.id,
'resource': {
'summary': evt.raw,
'start': {
'dateTime': evt.date

},
'end': {
'dateTime': evt.date

},
'extendedProperties': {
'shared': {
'tags': evt.tags?evt.tags.join(',') : '',
'urls': evt.urls?evt.urls.join(',') : '',
'users': evt.users?evt.users.join(',') : ''

}
}

}
}
gapi.client.calendar.events.insert(dateobj)
.execute(function(resp) {
$rootScope.$apply(function() {
d.resolve(resp);

});
});

});

return d.promise;
}

Lastly, to remove an event from the Google calendar:

var deleteEventFromCalendar = function(evtId, id) {
var d = $q.defer();
getCalendar(id)
.then(function(c) {
gapi.client.calendar.events.delete({
'calendarId': c.id,
'eventId': evtId

}).execute(function(r) {
$rootScope.$apply(function(resp) {
d.resolve(r);

})
});

45

});

return d.promise;
}

Providing login functionality in the app

Now that we have our services done, we’ll need to integrate the googleApi into
our app. There are two places that we’ll handle authentication:

• The routes – we want only authorized users to be able to see pages that
require authorization

• The events – we want to redirect on events that are thrown that say the
user needs to be logged in

Setting up routes to require logged in users is easy. We’ll use the resolve key
to resolve the user that's logged in. We can set this specifically
on the/dashboard‘ route:

// ...
.when('/dashboard', {
templateUrl: 'views/dashboard.html',
controller: 'DashboardController',
resolve: {
user: function(googleApi, googleLoginApi) {
googleApi.then(function(keys) {

return googleLoginApi.getLoggedInStatus();
});

}
}

})
// ...

Inside of our DashboardController, we can inject the user to get a hold of the
user, if we need it.

Secondly, we’ll need to protect our app from unlogged in users. We’ll simply
use straight Angular idioms when looking for an event that gets fired on the
$rootScope:

.run(['$rootScope', '$location', 'googleLoginApi',
function($rootScope, $location, googleLoginApi) {
$rootScope.$on('user:authorized', function(evt) {
$location.path('/dashboard');

46

});
$rootScope.$on('user:login_required', function(evt) {
$location.path('/');

});
}]);

With that, we now are completely integrated with the Google Calendar API.

The app/js/app.js in it’s entirety is pasted below:

'use strict';

// App
function onLoadCallback() {

var googleKeys = {
clientId: 'YOUR_CLIENT_ID',
apiKey: 'YOUR_API_KEY',
scopes: [
'https://www.googleapis.com/auth/calendar',
'https://www.googleapis.com/auth/userinfo.profile',
'https://www.googleapis.com/auth/userinfo.email'

]
};
window.bootGoogleApi(googleKeys);

}

angular.module('myApp', [
'myApp.controllers',
'myApp.filters',
'myApp.services',
'myApp.directives',
'ngRoute',
'googleServices'

])
.config(['$routeProvider', '$locationProvider',

function($routeProvider, $locationProvider) {

$routeProvider
.when('/',
{
templateUrl: 'views/home.html',
controller: 'HomeController'

})
.when('/login', {
templateUrl: 'views/login.html',
controller: 'LoginController'

47

})
.when('/dashboard', {
templateUrl: 'views/dashboard.html',
controller: 'DashboardController',
resolve: {
user: function(googleApi, googleLoginApi) {
googleApi.then(function(keys) {

return googleLoginApi.getLoggedInStatus();
});

}
}

})
.otherwise({redirectTo: '/'});

}])
.run(['$rootScope', '$location', 'googleLoginApi',

function($rootScope, $location, googleLoginApi) {
$rootScope.$on('user:authorized', function(evt) {
$location.path('/dashboard');

});
$rootScope.$on('user:login_required', function(evt) {
$location.path('/');

});
}]);

There we go! The calendar is ready to go. Congrats on finishing the application.
You’ve finished building the calendar app integrated with Google in natural
language. For more information about Angular, head over to ng-newsletter.com!

48

http://ng-newsletter.com

	Sample Calendar App
	Manually building our app
	Downloading angular
	Booting it up

	Modules
	Creating our-calendar directive
	Drawing the calendar
	Integrating form validation in our app

	Integrating with Google
	Including Google
	Building google Login
	Building a calendar API
	Providing login functionality in the app

